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Dynamic SPECT problem:
Reconstruction directly from projections

e Source distribution changes as camera rotates
e Incomplete spatio-temporal sampling of Radon transform

Reconstruction requires estimation of both:
— Geometry of the source distribution

— Parameters of tracer kinetic model
Very difficult, ill-conditioned, non-linear problem

Cannot be assured of a unique solution owing to

fundamental nature of problem
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Interpolation of sinotimogram
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Previous work

e Many algorithms have been developed over the past two
decades
e None has satisfactorily addressed the problem when:

— The projection data contain realistic levels of noise

AND

— Several regions of differing kinetics are present among

the sources
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Simultaneous spatial and kinetic parameter

estimation:

e We extend the joint spatial and kinetic parameter

estimation approach of Chiao et al. (1994) to multiple

dynamic regions
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Chiao, Rogers, Clinthorne, Fessler and Hero, IEEE TMI 13(2) 1994
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Extension to case of multiple regions is non-trivial:

p(a(t),s)

Normal myocardium
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Parameter redundancy in exponential sums

Exponential sums with very different parameters may have similar forms
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Chief objectives in present approach:

1. Ensure robustness against noise:

e Employ highly constrained spatial model - cannot

resolve conventional pixel-based image at low SNR’s

e Employ global-local hybrid optimization algorithm

2. Improve condition of problem:

e Exponential sum problem: Construct new basis set for

TAC’s to reduce parameter redundancy

e Constrain both geometric and kinetic parameters to

feasible ranges

e Reduce number of parameters
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Non-overlapping ellipse ring model
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Orthogonal basis functions

. Choose range of physiologically feasible rate constants:
Here we choose ko € [0.001, 1] min™!

. Use singular value decomposition (SVD)

to find an orthogonal basis for these exponentials

. Choose first few principal components as approximating

basis function set

. Convolve these with the blood input function
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a) Exponentials regularly logarithimically spaced (k1 O [10_4, 1]) sampled at 32 points
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Original TAC composition for region n:
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Approximating discrete TAC:
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Under new basis we enjoy:

e Reduction in parameter redundancy

= Better conditioned problem

e Dimensionality reduction (M < M)

= Skirts ‘curse of dimensionality’

= Lowers computational cost

BUT

TAC’s may now be negative - need to constrain the ™"
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Estimation problem:

Simultaneously determine:

e Parameters of ellipse ring model

e Parameters of the compartmental model of each region
Given:

e The measured sinogram

e A rough initial placement of the ring within image space
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Hybrid optimization algorithm

Least squares cost function has thousands of suboptimal local
minima
= Multistart algorithm is essential

Starting point generation: Adaptive simulated annealing

(ASA) algorithm

Parameter value refinement: Projected descent

algorithm - interval bounds on parameters
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Stochastically generated starting points

L ocal optimisation algorithm tragjectories
Equal cost contours of objective function

Boundaries of basins of attraction
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Algorithm evaluation

Generated 250,000 photon counts per slice
Ignore attenuation, scatter & imperfect system response

Fit to sinogram of segmented annulus phantom -

Can ellipse model cope with spatial model mismatch?

Include exaggerated number of compartments in phantom
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5 region ellipse phantom 8 region ellipse phantom 11 region ellipse phantom

5 segment annular phantom 8 segment annular phantom 11 segment annular phantom
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Progress (in image space) at generated state: 2

70 80

Total counts: 2.5e+05
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Progress (in image space) at generated state: 36
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Total counts: 2.5e+05
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Progress (in image space) at generated state: 600

70 80

Total counts: 2.5e+05
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Progress (in image space) at generated state: 14000
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Total counts: 2.5e+05
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Progress (in image space) at generated state: 4112000
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Results

e This particular configuration tested over 20 noise

realizations
e Good visual fits are obtained

e Adjacent regions with similar TAC’s may be merged

Metric Value =+ std. dev.

Mean RMS deviation in recovered TAC’s: 6.6 + .9%
Mean RMS error in wash-in parameter (kq): 20.8 + 4.7%
Mean RMS error in wash-out parameter (ko): 29.6 + 4.7%
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Conclusions

Performance is encouraging - estimates of useful accuracy

are obtained

Execution is slow (typically 12 hours on Pentium II
400MHz) = need to parallelize algorithm

Noise and model mismatch problems are minor compared
to problem of extricating individual TAC’s from their

SUIIS

Algorithm is believed to be the first to successtully
perform simultaneous spatial and kinetic estimation on

multiple regions at realistic noise levels

How will non-ideal imaging conditions affect

performance?
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